
Pair and Mob Programming
Secret weapon for agile and continuous software development

Thomas Much
 @thmuch
#JAXLondon

Thomas Much

Freelancer, Hamburg 

Agile Developer Coach

Software Developer (Java et al.)  

About…

@thmuch
#JAXLondon

A long time ago in a galaxy far,
far away….

The other day, in a cubicle next to you….
some coworking space

“Woah, who’s supposed to maintain this crap?”

“Who wrote that code?”

“Oh. That was me.”

“Leave that to <insert name here>,  
he wrote that in his #!@%&$!? coding style.”

Problem: Readability
• We read code a lot more often than we write it

• Understanding code is essential for  
product care and maintenance!

• We developers tend to write sloppy code – or too “clever” code

• Who’s going to give us feedback – before it’s too late?

solve problem
write code
read existing code

https://www.slideshare.net/cairolali/langlebige-architekturen

– Brian Kernighan

“Everyone knows that debugging is twice as hard  
as writing a program in the first place.

So if you're as clever as you can be when you write it,  
how will you ever debug it?”

Problem: Simplicity

Who protects us from being too “clever”?

“We’ve got a mandatory code review process!”

Code reviews?

Honesty of reviews questionable (for systemic reasons).

Wrong incentives. 

Feedback too late.

Who’s really going to make major changes then?

“Developer A is on vacation,  
we’ll get the urgent bugfix afterwards.”

“Developer B has left the company, 
we’ll have to rewrite his apps from scratch.”

“It will take months before newly-hired developer C  
fully understands our project and code.”

Problem: Know-how transfer

Missing know-how transfer.

No collective code product ownership.

How? Documentation, workshops, trainings …

Are we working together as a team on our product / code?

“But we are a team?!”

“Team”work

Task 1

Task 2

A

B

Solution! “Let’s become agile.”
To Do In Progress Done

Story 1

Story 2

A

B

– Tim Ottinger

“If your agile Team has individual work assignments,
I suspect it is neither agile nor team.”

Real team collaboration
To Do In Progress Done

Story 1

Story 2

A

C

B

D

Problem: Collaboration

How can we really work together

instead of just next to each other?  

Problems!?

Readability / Simplicity / Intelligibility

Maintainability

Know-how transfer / Collaboration

What do we want to achieve?

Getting things “done” quickly?

(“devil-may-care”, release & run)

Or rather develop maintainable software?

Maintainable software

In “my” projects: 
Clients have to / want to maintain software themselves.  

Our goal: 
Develop maintainable software.

Supported by pair programming.

Pair programming coaching
Idea: Actively promote pair programming.

Since 2013: Numerous teams supported by coaching.

E-commerce, BI, traditional enterprise back-ends.  

Coach accompanies team for 1-2 sprints (2-4 weeks).

Coach works as a developer wherever possible.

Timetable
Kickoff

1-2 weeks of
coaching

Status
1-2 weeks of

coaching
Retrospective

Kickoff

1-2 weeks of
coaching

Status
1-2 weeks of

coaching
Retrospective

{½ or 1
sprint

Coach codes
together with

the team

Pair programming in a nutshell

1
task

Driver & navigator

https://commons.wikimedia.org/wiki/File:FORD_Taunus_17M_P2_deLuxe_Steering_wheel.jpg http://www.marcusvenzke.de/HamburgKarte/

Variants

Pair programming – our salvation

Know-how transfer

Collective code product ownership

Clean code

Maintainability

Quality

Yeah,
well …

Nothing new

Pair programming – ca. 1992? .. 2000 …

Extreme programming (XP) – ca. 1996 .. 2000 …

“Flaccid Scrum” (Fowler 2009): Scrum = XP - practices !

Pair programming is “in”

Boss: 
“We’re doing pair programming now. 

You’ll sit in pairs in front of your computers!”

Developer A: “Finally!” 
Developer B: “No. Not really. Not again.”  
Developer C: “???”

“The other one’s way too fast.”

“The other one’s way too slow and just doesn’t get it.”

“I’m exhausted. Every. Single. Evening.”

“I’d rather work alone.”

Anti-patterns
 

Fixed pair works a story.

That story takes 4 weeks or more.

Basically one developer owns the keyboard.

Variation, relief & creativity are missing completely!

Small print

We can’t do without exercises
appropriate communication

switching roles

taking breaks efficiently

pair rotation

how to deal with different levels of knowledge

preparation of stories & tasks

Appropriate communication
silence ⟷ too much talking  

As engineers we have to practice communicating with people…  

Driver explains “why”, not “how”.

Navigator does not criticise details.

Proper pair programming

Proper pair programming is

communicating by writing down code. 

Not just talking about hypothetical code.

 

Why pair programming helps us

We are subject to certain “brain patterns”:

interpretation

“how” vs. “why”

…

https://www.smidig.de/2015/12/brain-patterns-for-software-development/
https://javabarista.blogspot.de/2016/06/pair-programming-das-gehirn.html

Switching roles
• Frequently!

• Every few minutes?!

• Keeps attentiveness & creativity alive.

ping-pong programming 
red-green-refactor  
TDD

Code reviews: ongoing & implicit

Pair programming = software peer review.

Timely feedback.

Even for major changes.  

Explicit code reviews: optional

No mandatory code reviews when working in pairs.

 
(But you can request them if you need another “senior” view.)  

Attentiveness & creativity

Taking breaks efficiently
Before attentiveness decreases too much.

Life hack of choice: “Pomodoro”

time management method

https://en.wikipedia.org/wiki/File:Il_pomodoro.jpg

Taking breaks efficiently

Use
timer app!

25 min. 5 25 5 25 5 25 5
timebox

work
focused
on the
task!

break

stay
on

schedule!

longer break

pair rotation?

Isolated knowledge

Isolated knowledge 2.0

1 1
2 2

3 3

Pair rotation!

1
12

2

3

3

At least

once a day

Who with whom?
All together! 

expert & expert 

expert & beginner  

beginner & beginner

Sparring partner

Know-how transfer.
Beginner’s mind!

Discover project.
Reveal weak spots.

What about the coach?

Coach is an expert (methodically, sometimes technically)

Coach is a beginner (functionally, often technically)  

Realistic collaboration!

Acceptance

The coach …
is a pairing 
partner 
 
 
watches other  
pairs

 
practises together with the team:  
Switching roles. Pair rotation. Taking breaks. Variants of pair programming.

Variants of pair programming

https://twitter.com/thmuch/status/959456902877974528

@LlewellynFalco

“classic” “strong style”

Remote 
pair programming

Be an experienced offline (co-located) pair programmer first!

Tools: 
Floobits editor IDE plug-in, AWS Cloud 9 etc.  

TeamViewer, appear.in, Tuple.app etc.

Give it a try. Depends a lot on your network (proxies etc.).

Thorough preparation a must

Joint preparation of suitable, small stories & tasks.

Discovery, planning, …

Often, teams see room for improvement 
when doing pair programming.

Comprehensive collaboration

Across roles: 
Dev, QA, UX, …

Pair Doing – “Pair on Everything”

Change of perspective. 

?Technology
Programming language

Tooling ?Tests
Quality

?Business
Product

User

wait, research, (re-)plan

? ?

Technology
Programming language

Tooling

Tests
Quality

Business, Product, User
Dev

Dev

Ops

PO

QS

Technology
Programming language

Tooling

Tests
Quality

Business, Product, User

Mob programming

Dev

Dev

Ops

PO

QS

at the same time,
in the same space!

Mob programming

– Llewellyn Falco

“It’s about getting the BEST (not the most) from your team.”

– Woody Zuill

“All the brilliant minds working on the same thing,  
at the same time, on the same computer.”

“Continuous Integration of Ideas”

Mob programming
Switch roles!

Fixed timebox  
(every 5-10 min.), http://mobster.cc

Dynamic mob:  
coming and going.

Feels less cramped 
compared to pair programming.

Mob programming
Across team roles!

Getting the most important task 
done first.

Dev

DevOps

QS UX
PO

Highest priority first!
To do In progress Done

Story 1

Story 2

WIP limit 1

Highest priority first!
To do In progress Done

Story 1

Story 2

WIP limit 1

Mob programming – setups

Driver Nav.

Mob

Coach

Coach

– Marcus Hammarberg

“Mob Programming ... is the most important improvement
I've seen the last couple of years.”

https://twitter.com/marcusoftnet/status/1042708243544514560

Modern Agile

http://modernagile.org/

Pair & mob

programming

are part of it,

simple as that.

And still …

“I’m faster alone.”

– African proverb

“If you want to go fast, go alone.  

If you want to go far, go together.”

Raise awareness

Take care of the details
Many reasons for rejection…

Proponents and opponents must compromise.

Fix clear agreements.

“Short-time pair programming”, for instance.

One small step for a developer, one giant leap for a team!

– Jason Gorman

“Don't think of pair programming 
as 2 people doing the work of one.

Think of it as 2 people avoiding the rework of 7.”

Speed… velocity… pace…

We follow these principles:
…

Agile processes promote sustainable development.
The sponsors, developers, and users should be able

to maintain a constant pace indefinitely.
…

http://agilemanifesto.org/principles.html

100% pair programming?
Probably not. But:

Should be standard programming practice!

No excuses for not working in pairs.

How much % per day do we code? Hand on heart! 100%?

Much of the real coding time should be spent working in pairs!

Allow for solo time!  

For learning something new,

reading, doing research etc.

Recap

Pair & mob programming strengthen agile processes.

Focus on developer skills & programming practices.  

Coaching helps establishing pair & mob programming long-term.

Developers experience benefits hands-on.

Methodical agile coaching – important!

But:

Don’t forget coaching of programming practices. 
 
 
 

Questions?

Mob Programming

Pomodoro

Strong Style Pairing

Readability
Simplicity

Know-How Transfer

Collective Product Ownership

XP

TDD

Pair Programming

Coaching

Modern Agile

Velocity Speed

Thank you!

thomas@muchsoft.com
www.javabarista.de

@thmuch

