Agile meets
Architecture

=

How Testability Supports Your Agility

— and why this matters for your architecture!

Thomas Much
¥ @thmuch

6 September 2022, Berlin

TL'DR

Aqgility in software development:
Continuously deliver value to our customers.
Easily & quickly adapt to change.

Requires safety, for example by fast, continuous test automation.
Difficult it code and architecture aren't designed for testability.

Separation of integration code and domain code
s one of the fundamental ideas for testability.

Fosters collaboration & thinking
about testing & testabillity in different roles.

s &

y AV AV A

Please Note

|deas presented today are not new.
Necessary to talk about basics from time to time.
These basics are still essential.

Maybe more essential than 20 years ago,
because more & more companies want to be agile
and deliver software (value) continuously.

y AW AW & &Y 48y &y

\\ | Die :
\\ \ Techniker

\ Architecture \ www.tk.de/I T

//'/ ” X N
/ \
| »I: V \V \\ : T‘

Technical
Agile

® @thmuch

\, Architecture

\
\

\

Typical situations:
Our team isn’t working "Agile" enough.
Customers not satisfied, results come in too slowly.

"We don't see any progress’

Architecture

Typical Symptoms

No tests
(just maybe some random clicking here and there)

Mostly manual tests
(slow!)

Slow automated tests
(usually e2e / ui)

Fragile, unstable, flakey tests
(dependent on environment / external systems)

—:

VIV FINAINgS

Teams with fast test automation 9
are more agile”
than those without

*) deliver more often, release in smaller batches, have a common
understanding of their software, can support each other better — and
they can write tests more easily

Not necessarily all "Agile” teams ['ve met ...

What Makes Them More Agile”

Mostly
automated
gateway

ction gateway

Fast feedback!
Fast local tests

@9 Deploy to
]| p re .

Viultiple | OfS Or Mostly
times a automatea automated
p) T ¢ tests /f'/ Deployments \Q:

{ decoupled from
CIEERES ‘

How Dare They”

!j Safety net of a fast, predictable, comprehensive test suite

They deliver value continuously
(and if something Bad™ happens, it was only
a small change, easy to analyze, easy to revert)

Happy devs
(and probably happy customers)

They dare to make changes,
dare to try what helps the customers

That's Pretty Agile! @

Modern Agile, actually.

Modern Software Engineering.

Result of BEvolution

(Most) often started small, then scaled.
With lots of freedom and some guidelines.

What is Architecture, Anyway”?

"Everything that is hard to change”

All decisions that need lots of rework/redesign/refactoring later on.

. architecture

How to decide”?

Some general principles to keep in mind, pretty old ones.

Aspects of Structure And Design

HIgh modularity
Strong Cohesion
. oose coupling

Information Hiding

Factors Affecting Test Speed

HIgh modularity
Strong Cohesion
. oose coupling

Information Hiding

e Essential for a solid foundation of fast tests.

* Helpftul for testing on all levels.

Separation of
Integration Code
ano
Domain Code

e Local decision.

o Often possible in legacy systems, too.

& &
@
:Q‘

N
eed an Example
e P

A Common Real-World Example

Validation

INnput

data » Database

lranstormation

| ots of Dependencies

Dependencies are often beyond our control

Database
Transtormation

Dependencies ... Reasons for Changes

... changes that break the code
... changes that break the tests

Database
Transtormation

What & Where to Test”

e) End to end (everythlng) I

Integration

‘Unit / component

\
\
e v i — P <

\Validation

Input n ——— Database

data

H 11]S wm 1 V}fﬂ

Few Dependencies, Maximum Scope

| et tests break
for as few reasons
as possible

(€St as much Or your use case
as possible!

Validation
TFEW \Cj‘f() M E]'H ON

Input
data

|[deal World — Clear Responsibilities

External Integration Domain code Integration External
system code ('business logic") code system

Validation
Iranstormation

Input
data

Dependencies Creep Into Our Domain

External Integration Domain code Integration External
system code ('business logic") code system

——— - Rt =TS e T =t sy a— s 5
—_— e = - = = - e A i e e e 3

Validation
- —— > Database

Input

data e
ranstrormation

ependenmes N Domain Code

function validateAndTransform(jsonEntity) {

validateSomeBusinessRules(jsonEntity), ~

transformSomeValues(jsonEntity);

map loDatabasekntity(jsonEntity) -> dbEntity;
save loDatabase(dbEntity);

j

function validateAndTransform(

e — — =
- EE —
——

idatesomeBusineSSRU‘eS(J‘SOnEnJ\[ﬁy); ,
trnsformSomeVa\ueS(jSOﬂE”“W)?

map loDatabasekEntity(jsonkEntity) -> dbEntity;
save loDatabase(dbEntity);

ependencies in Domain Code

~ function vandrf(jonn) l B
call domainCode(jSONENtity); rereessssssssssssnans

map loDatabasekntity(jsonEntity) -> dbEntity;
save loDatabase(dbEntity);

/' function domainCode(jsonEntity) {

validateSomeBusinessRules(jsonkEntity);
transtormSomeValues(jsonkntity);

j

Dependencies in Domain Code

function validateAndTransform(jsonEntity) {
map loDomainkntity(jsonkntity) -> domainEntity; |
call domainCode(domainEntity); sessssssssssracsraesnnanns

Lots of fast (unit) tests
here
(including edge cases)

map loDatabasekntity(domainkntity) -> dbEntity;
save loDatabase(dbEntity);

function domainCode(domainkEntity) {

validateSomeBusinessRules(domainkEntity);
transformSomeValues(domainEntity);

j

Only some integration tests
here
("happy path" & error case?)

Patterns & Styles

Code design patterns
'Integration Operation Segregation Principle” (IOSP)
'Single Layer of Abstraction” (SLA)
elcC.

There are similar architectural patterns & styles as well

Architectural Patterns

Input

Architectural Patterns

h .

Fast (unit) test for complete use-case

= = e = e e ———————— ———— = - = — — = e e e e et _ N
e = = - —— e e ————— - i = = = == — —

—>» Database

Architectural Patterns

INnput

—>» Database
data

Architectural Styles

Input —> I I —>» Database
data

Architectural Styles

Ports & Adapters ("Hexagonal®) Onion Use cases

Application

Outside & Inside for Longevity

More under | ess under
our control our control

Port

Allowed dependencies

‘Less likely "More likely

Business to change” to change”

' j/’l '|J| :,"
requirements!

b

Fast Tests for Complete Use Cases

Application

Fast (unit) tests
— not only micro tests

Patterns & Styles for Testability

Focus not so much on structuring code
Focus more on ways of thinking — on "why’
| earn how to build software with testability in mind

Easier to grasp

@2

Agile Developers
(XP Practitioners)

"Why not just do TDD all the way”?"

Just enough tests.

Code design technique / strategy ¥

Makes your code testable (and probably your architecture, too) ¥

TDD Is Not the (Goal

£ TDD is the oy
cure, you'll often

DD can be
ha
rd to grasp. May seem like ideology
: encounter

reluctance

Schools” can be confusing.

'Inside-out
. outside-|
utside-in", "London’, 'Beltast" and "B
erlin® ...
Needs experience.

Especially f |
y for creating your architecture with TDD

TDD 1s a Really Usetul Tool

Motivate "why" of structuring patterns & styles for testability.

Then use TDD as a means for "how".

L earn/show/experiment
how to use TDD not only for micro tests ("unit tests")

; oNUS

B

but for fast tests of complete use cases.

What BDD aims at. As TDD was intended?

; ONUS

B

How to Keep Testability”

Test your architecture!
Build Fithess Functions for the core ideas behind your architecture

‘dependencies from outside to inside only”
'no framework dependencies in domain code”
elc. .

' Unit Use suitable tools, for example ArchUnit

First step towards an evolutionary architecture”!

Wrap-Up

Testabllity at the Speed of Light

Testability is a property of your architecture.
Enables a safety net that promotes agility.

Learn how to build software with testability in mind!

~ Testability

N,

ExXplore freedom
of (design) choices

estability

-

Start where you are

Collaborate.
Work together.
Code together.
| earn from each other.

Further Reading

'.":".‘_|
PREMTICE
HALL

- Robert C. Martin Series ‘

 Clean Architecture
: " ACraftsman’s Guide to- |
) Software Structure and Design

PR

Robert C. Martin

atributions by James Grenning and Simon Brown

/
i e e

;-:ff *’f"’ﬁ.ﬂlljef 4 'ﬁ‘y‘ﬁf’ ol
 Janet Gregory & Lisa (e -
& LR fglﬁﬂﬂn{p’ﬁs’f . l | E‘E“-'-)

Fareward by Kevlin Henney
atrerward by Jason Gorman

’

Pedra M. 5
- =anktos, py
and Alessandro Di g'_";iﬁ; Consolaro

A AR &'df\",ﬂgpgr{s__sg-uﬂp]

t K Doing What Works to
| Build Better Software Faster
Fareword by TRISHA GEE

A

ra Agile meets
Agility Architecture Eact Tests
Testability ! ot's talk! Cohesion
el S 1ldiK! :
Architecture (Q & A) Decoupling
_ Dependencies
Code Design

Continuous Delivery
® ethmuch Fast Feedback Loops

Agile meets
Architecture

=

Thank You ®

<

Techniker

www.tk.de/IT ® @thmuch

"Do not depend on volatile things”
(Robert C. Martin)

"Make the change easy (this can be hard!),
then make the easy change”
(Kent Beck)

"Many More Much Smaller Steps”
(GeePaw Hill)

